Modulation of Root Signals in Relation to Stomatal Sensitivity to Root-sourced Abscisic Acid in Drought-affected Plants
نویسندگان
چکیده
Stomatal sensitivity to root signals induced by soil drying may vary between environments and plant species. This is likely to be a result of the interactions and modulations among root signals. As a stress signal, abscisic acid (ABA) plays a central role in root to shoot signaling. pH and hydraulic signals may interact with ABA signals and thus, jointly regulate stomatal responses to changed soil water status. pH itself can be modified by several factors, among which the chemical compositions in the xylem stream and the live cells surrounding the vessels play crucial roles. In addition to the xylem pH, more attention should be paid to the direct modulation of leaf apoplastic pH, because many chemical compositions might strongly modify the leaf apoplastic pH while having no significant effect on the xylem pH. The direct modulation of the ABA signal intensity may be more important for the regulation of stomatal responses to soil drying than the ABA signal per se. The ABA signal is also regulated by the ABA catabolism and the supply of precursors to the roots if a sustained root to shoot communication of soil drying operates at the whole plant level. More importantly, ABA catabolism could play crucial roles in the determination of the fate of the ABA signal and thereby control the stomatal behavior of the root-sourced ABA signal.
منابع مشابه
Modification of leaf apoplastic pH in relation to stomatal sensitivity to root-sourced abscisic acid signals.
The confocal microscope was used to determine the pH of the leaf apoplast and the pH of microvolumes of xylem sap. We quantified variation in leaf apoplast and sap pH in relation to changes in edaphic and atmospheric conditions that impacted on stomatal sensitivity to a root-sourced abscisic acid signal. Several plant species showed significant changes in the pH of both xylem sap and the apopla...
متن کاملExpression of the Arabidopsis mutant ABI1 gene alters abscisic acid sensitivity, stomatal development, and growth morphology in gray poplars.
The consequences of altered abscisic acid (ABA) sensitivity in gray poplar (Populus x canescens [Ait.] Sm.) development were examined by ectopic expression of the Arabidopsis (Arabidopsis thaliana) mutant abi1 (for abscisic acid insensitive1) gene. The expression resulted in an ABA-insensitive phenotype revealed by a strong tendency of abi1 poplars to wilt, impaired responsiveness of their stom...
متن کاملGrafting cucumber onto luffa improves drought tolerance by increasing ABA biosynthesis and sensitivity
Balancing stomata-dependent CO2 assimilation and transpiration is a key challenge for increasing crop productivity and water use efficiency under drought stress for sustainable crop production worldwide. Here, we show that cucumber and luffa plants with luffa as rootstock have intrinsically increased water use efficiency, decreased transpiration rate and less affected CO2 assimilation capacity ...
متن کاملChemical root to shoot signaling under drought.
Chemical signals are important for plant adaptation to water stress. As soils become dry, root-sourced signals are transported via the xylem to leaves and result in reduced water loss and decreased leaf growth. The presence of chemical signals in xylem sap is accepted, but the identity of these signals is controversial. Abscisic acid (ABA), pH, cytokinins, a precursor of ethylene, malate and ot...
متن کاملLeaf Abscisic Acid Accumulation in Response To Substrate Water Content: Linking Leaf Gas Exchange Regulation with Leaf Abscisic Acid Concentration
Quantitative differences in leaf abscisic acid (ABAL) among four cultivars of red maple (Acer rubrum L.) and one freeman maple (Acer ×freemanii E. Murray) cultivar were investigated. This study tested the hypothesis that ABAL concentration can be used to compare the effects of water stress on the gas exchange response of fi ve different maple genotypes, including four red maple cultivars [‘Summ...
متن کامل